感知视频质量评估(VQA)是许多流和视频共享平台的组成部分。在这里,我们以自我监督的方式考虑学习具有感知相关的视频质量表示的问题。失真类型的识别和降解水平确定被用作辅助任务,以训练一个深度学习模型,该模型包含深度卷积神经网络(CNN),该模型提取了空间特征,以及捕获时间信息的复发单元。该模型是使用对比度损失训练的,因此我们将此训练框架和结果模型称为对比度质量估计器(Conviqt)。在测试过程中,训练有素的模型的权重被冷冻,并且线性回归器将学习的功能映射到No-Reference(NR)设置中的质量得分。我们通过分析模型预测与地面真相质量评级之间的相关性,并与最先进的NR-VQA模型相比,我们对多个VQA数据库进行了全面评估,并实现竞争性能在这些数据库上进行了培训。我们的消融实验表明,学到的表示形式非常强大,并且在合成和现实的扭曲中很好地概括了。我们的结果表明,可以使用自我监督的学习来获得具有感知轴承的引人注目的表示。这项工作中使用的实现已在https://github.com/pavancm/conviqt上提供。
translated by 谷歌翻译
用户生成的内容(UGC)的盲或禁区视频质量评估已成为趋势,具有挑战性,迄今未解决的问题。因此,适用于该内容的准确和高效的视频质量预测因素都需要实现更智能的分析和处理UGC视频的需求。以前的研究表明,自然场景统计和深度学习特征既足以捕获空​​间扭曲,这有助于UGC视频质量问题的重要方面。然而,这些模型无法对实际应用中预测复杂和不同的UGC视频的质量无能为力或效率低。在这里,我们为UGC含量介绍了一种有效且高效的视频质量模型,我们将我们展示快速准确的视频质量评估员(Rapique),我们展示了与最先进的(SOTA)模型相对表现,而是具有订单-magnitude更快的运行时。 Rapique结合并利用了质量意识的现场统计特征和语义知识的深度卷积功能的优势,使我们能够设计用于视频质量建模的第一通用和有效的空间和时间(时空)带通统计模型。我们对最近的大型UGC视频质量数据库的实验结果表明,Rapique以相当更低的计算费用提供所有数据集的顶级表现。我们希望这项工作促进并激发进一步努力实现潜在的实时和低延迟应用程序的视频质量问题的实际建模。为促进公共用途,在线进行了求助的实施:\ url {https://github.com/vztu/rapique}。
translated by 谷歌翻译
Kernels are efficient in representing nonlocal dependence and they are widely used to design operators between function spaces. Thus, learning kernels in operators from data is an inverse problem of general interest. Due to the nonlocal dependence, the inverse problem can be severely ill-posed with a data-dependent singular inversion operator. The Bayesian approach overcomes the ill-posedness through a non-degenerate prior. However, a fixed non-degenerate prior leads to a divergent posterior mean when the observation noise becomes small, if the data induces a perturbation in the eigenspace of zero eigenvalues of the inversion operator. We introduce a data-adaptive prior to achieve a stable posterior whose mean always has a small noise limit. The data-adaptive prior's covariance is the inversion operator with a hyper-parameter selected adaptive to data by the L-curve method. Furthermore, we provide a detailed analysis on the computational practice of the data-adaptive prior, and demonstrate it on Toeplitz matrices and integral operators. Numerical tests show that a fixed prior can lead to a divergent posterior mean in the presence of any of the four types of errors: discretization error, model error, partial observation and wrong noise assumption. In contrast, the data-adaptive prior always attains posterior means with small noise limits.
translated by 谷歌翻译
With more and more data being collected, data-driven modeling methods have been gaining in popularity in recent years. While physically sound, classical gray-box models are often cumbersome to identify and scale, and their accuracy might be hindered by their limited expressiveness. On the other hand, classical black-box methods, typically relying on Neural Networks (NNs) nowadays, often achieve impressive performance, even at scale, by deriving statistical patterns from data. However, they remain completely oblivious to the underlying physical laws, which may lead to potentially catastrophic failures if decisions for real-world physical systems are based on them. Physically Consistent Neural Networks (PCNNs) were recently developed to address these aforementioned issues, ensuring physical consistency while still leveraging NNs to attain state-of-the-art accuracy. In this work, we scale PCNNs to model building temperature dynamics and propose a thorough comparison with classical gray-box and black-box methods. More precisely, we design three distinct PCNN extensions, thereby exemplifying the modularity and flexibility of the architecture, and formally prove their physical consistency. In the presented case study, PCNNs are shown to achieve state-of-the-art accuracy, even outperforming classical NN-based models despite their constrained structure. Our investigations furthermore provide a clear illustration of NNs achieving seemingly good performance while remaining completely physics-agnostic, which can be misleading in practice. While this performance comes at the cost of computational complexity, PCNNs on the other hand show accuracy improvements of 17-35% compared to all other physically consistent methods, paving the way for scalable physically consistent models with state-of-the-art performance.
translated by 谷歌翻译
Sign language is the preferred method of communication of deaf or mute people, but similar to any language, it is difficult to learn and represents a significant barrier for those who are hard of hearing or unable to speak. A person's entire frontal appearance dictates and conveys specific meaning. However, this frontal appearance can be quantified as a temporal sequence of human body pose, leading to Sign Language Recognition through the learning of spatiotemporal dynamics of skeleton keypoints. I propose a novel, attention-based approach to Sign Language Recognition exclusively built upon decoupled graph and temporal self-attention: the Sign Language Graph Time Transformer (SLGTformer). SLGTformer first deconstructs spatiotemporal pose sequences separately into spatial graphs and temporal windows. SLGTformer then leverages novel Learnable Graph Relative Positional Encodings (LGRPE) to guide spatial self-attention with the graph neighborhood context of the human skeleton. By modeling the temporal dimension as intra- and inter-window dynamics, I introduce Temporal Twin Self-Attention (TTSA) as the combination of locally-grouped temporal attention (LTA) and global sub-sampled temporal attention (GSTA). I demonstrate the effectiveness of SLGTformer on the World-Level American Sign Language (WLASL) dataset, achieving state-of-the-art performance with an ensemble-free approach on the keypoint modality.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Multimodal models are becoming increasingly effective, in part due to unified components, such as the Transformer architecture. However, multimodal models still often consist of many task- and modality-specific pieces and training procedures. For example, CLIP (Radford et al., 2021) trains independent text and image towers via a contrastive loss. We explore an additional unification: the use of a pure pixel-based model to perform image, text, and multimodal tasks. Our model is trained with contrastive loss alone, so we call it CLIP-Pixels Only (CLIPPO). CLIPPO uses a single encoder that processes both regular images and text rendered as images. CLIPPO performs image-based tasks such as retrieval and zero-shot image classification almost as well as CLIP, with half the number of parameters and no text-specific tower or embedding. When trained jointly via image-text contrastive learning and next-sentence contrastive learning, CLIPPO can perform well on natural language understanding tasks, without any word-level loss (language modelling or masked language modelling), outperforming pixel-based prior work. Surprisingly, CLIPPO can obtain good accuracy in visual question answering, simply by rendering the question and image together. Finally, we exploit the fact that CLIPPO does not require a tokenizer to show that it can achieve strong performance on multilingual multimodal retrieval without
translated by 谷歌翻译
Federated learning (FL) is an emerging machine learning paradigm, in which clients jointly learn a model with the help of a cloud server. A fundamental challenge of FL is that the clients are often heterogeneous, e.g., they have different computing powers, and thus the clients may send model updates to the server with substantially different delays. Asynchronous FL aims to address this challenge by enabling the server to update the model once any client's model update reaches it without waiting for other clients' model updates. However, like synchronous FL, asynchronous FL is also vulnerable to poisoning attacks, in which malicious clients manipulate the model via poisoning their local data and/or model updates sent to the server. Byzantine-robust FL aims to defend against poisoning attacks. In particular, Byzantine-robust FL can learn an accurate model even if some clients are malicious and have Byzantine behaviors. However, most existing studies on Byzantine-robust FL focused on synchronous FL, leaving asynchronous FL largely unexplored. In this work, we bridge this gap by proposing AFLGuard, a Byzantine-robust asynchronous FL method. We show that, both theoretically and empirically, AFLGuard is robust against various existing and adaptive poisoning attacks (both untargeted and targeted). Moreover, AFLGuard outperforms existing Byzantine-robust asynchronous FL methods.
translated by 谷歌翻译
Training large, deep neural networks to convergence can be prohibitively expensive. As a result, often only a small selection of popular, dense models are reused across different contexts and tasks. Increasingly, sparsely activated models, which seek to decouple model size from computation costs, are becoming an attractive alternative to dense models. Although more efficient in terms of quality and computation cost, sparse models remain data-hungry and costly to train from scratch in the large scale regime. In this work, we propose sparse upcycling -- a simple way to reuse sunk training costs by initializing a sparsely activated Mixture-of-Experts model from a dense checkpoint. We show that sparsely upcycled T5 Base, Large, and XL language models and Vision Transformer Base and Large models, respectively, significantly outperform their dense counterparts on SuperGLUE and ImageNet, using only ~50% of the initial dense pretraining sunk cost. The upcycled models also outperform sparse models trained from scratch on 100% of the initial dense pretraining computation budget.
translated by 谷歌翻译
Classifiers in supervised learning have various security and privacy issues, e.g., 1) data poisoning attacks, backdoor attacks, and adversarial examples on the security side as well as 2) inference attacks and the right to be forgotten for the training data on the privacy side. Various secure and privacy-preserving supervised learning algorithms with formal guarantees have been proposed to address these issues. However, they suffer from various limitations such as accuracy loss, small certified security guarantees, and/or inefficiency. Self-supervised learning is an emerging technique to pre-train encoders using unlabeled data. Given a pre-trained encoder as a feature extractor, supervised learning can train a simple yet accurate classifier using a small amount of labeled training data. In this work, we perform the first systematic, principled measurement study to understand whether and when a pre-trained encoder can address the limitations of secure or privacy-preserving supervised learning algorithms. Our key findings are that a pre-trained encoder substantially improves 1) both accuracy under no attacks and certified security guarantees against data poisoning and backdoor attacks of state-of-the-art secure learning algorithms (i.e., bagging and KNN), 2) certified security guarantees of randomized smoothing against adversarial examples without sacrificing its accuracy under no attacks, 3) accuracy of differentially private classifiers, and 4) accuracy and/or efficiency of exact machine unlearning.
translated by 谷歌翻译